I. $ 88x^{2}-19x+1=0 $
II. $ 132y^{2}-23y+1=0 $
A) If $ x\ge y $
B) If $ x>y $
C) If $ x\le y $
D) If $ x<y $
E) If relationship between x and y cannot be established
Correct Answer: A
$ \Rightarrow $ $ 88x^{2}-11x-8x+1=0 $
$ \Rightarrow $ $ 11x(8x-1)-1(8x-1)=0 $
$ \Rightarrow $ $ (11x-1)(8x-1)=0 $
$ \therefore $ $ x=\frac{1}{8}, $ $ \frac{1}{11} $ II. $ 132y^{2}-23y+1=0 $
$ \Rightarrow $ $ 132y^{2}-12y-11y+1=0 $
$ \Rightarrow $ $ 12y(11y-1)-1(11y-1)=0 $
$ \Rightarrow $ $ (12y-1)(11y-1)=0 $
$ \therefore $ $ y=\frac{1}{12}, $ $ \frac{1}{11} $ Hence, $ x\ge y $