Quantitative Aptitude Ques 1720
Question: Directions: In each of these questions two equations I and II are given. You have to solve both the equations and give answer. [IBPS (SO) 2014]
I. $ 2x^{2}+5x+3=0 $
II. $ y^{2}+9y+14=0 $
Options:
A) If $ x\ge y $
B) If $ x>y $
C) If $ x\le y $
D) If $ x<y $
E) If relationship between x and y cannot be established
Show Answer
Answer:
Correct Answer: B
Solution:
- I. $ 2x^{2}+5x+3=0 $
$ \Rightarrow $ $ 2x^{2}+2x+3x+3=0 $
$ \Rightarrow $ $ 2x(x+1)+3(x+1)=0 $
$ \Rightarrow $ $ (x+1)(2x+3)=0 $
$ \therefore $ $ x=-\frac{3}{2}, $ $ -1 $ II. $ y^{2}+9y+14=0 $
$ \Rightarrow $ $ y^{2}+7y+2y+14=0 $
$ \Rightarrow $ $ y(y+7)+2(y+7)=0 $
$ \Rightarrow $ $ (y+2)(y+7)=0 $
$ \therefore $ $ y=-2, $ $ -7 $ Hence, $ x>y $