Quantitative Aptitude Ques 1680

Question: In the figure given below, AB is parallel to $ CD, $ $ \angle ABC=65{}^\circ , $ $ \angle CDE=15{}^\circ $ and $ AB=AE. $ What is the value of $ \angle AEF? $

Options:

A) $ 30{}^\circ $

B) $ 35{}^\circ $

C) $ 40{}^\circ $

D) $ 45{}^\circ $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Given that, $ \angle ABC=65{}^\circ $ and $ \angle CDE=15{}^\circ $ Here, $ \angle ABC+\angle TCB=180{}^\circ $ $ [\because AB||CD] $

$ \therefore $ $ \angle TCB=180{}^\circ -65{}^\circ =115{}^\circ $ $ \because $ $ \angle TCB+\angle DCB=180{}^\circ $ [linear pair]

$ \therefore $ $ \angle DCB=65{}^\circ $ Now, in $ \Delta CDE, $ $ \angle CED=180{}^\circ -(\angle ECD+\angle EDC) $ $ [\because \angle ECD=\angle BCD] $ $ \because $ $ \angle DEC+\angle FEC=180{}^\circ $ [linear pair]

$ \Rightarrow $ $ \angle FEC=180{}^\circ -100{}^\circ =80{}^\circ $ Given that, $ AB=AE $ i.e $ \Delta ABE $ an isosceles triangle.

$ \therefore $ $ \angle ABE=\angle AEB=65{}^\circ $ $ \because $ $ \angle AEB+\angle AEF+\angle FEC=180{}^\circ $ [straight line]

$ \Rightarrow $ $ 65{}^\circ +x{}^\circ +80{}^\circ =180{}^\circ $

$ \therefore $ $ x{}^\circ =180{}^\circ -145{}^\circ =35{}^\circ $