Quantitative Aptitude Ques 1679
Question: If $ p=a\sin x+b\cos x $ and $ q=a\cos x-b\sin x, $ then what is the value of $ p^{2}+q^{2}? $
Options:
A) $ a+b $
B) $ ab $
C) $ a^{2}+b^{2} $
D) $ a^{2}-b^{2} $
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, $ p=a\sin x+b\cos x $ …(i)
and $ q=a\cos x-b\sin x $ …(ii)
On squaring Eqs. (i) and (ii), we get
$ p^{2}=a^{2}{{\sin }^{2}}x+b^{2}{{\cos }^{2}}x+2ab\sin x\cos x $
and $ q^{2}=a^{2}{{\cos }^{2}}x+b^{2}{{\sin }^{2}}x-2ab\sin x\cos x $
Now, $ p^{2}+q^{2}=a^{2}{{\sin }^{2}}x+b^{2}+{{\cos }^{2}}x+2ab\sin x\cos x $
$ +a^{2}{{\cos }^{2}}+b^{2}{{\sin }^{2}}x-2ab\sin x\cos x $
$ =a^{2}({{\sin }^{2}}x+{{\cos }^{2}}x)+b^{2}({{\cos }^{2}}x+{{\sin }^{2}}x) $
$ =a^{2}+b^{2} $