Quantitative Aptitude Ques 1673

Question: The diameters of two circles are the side of a square and the diagonal of the square. The ratio of the areas of the smaller circle and the larger circle is

Options:

A) $ 1:4 $

B) $ \sqrt{2}:\sqrt{3} $

C) $ 1:\sqrt{2} $

D) $ 1:2 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Diagonal of a square $ =\sqrt{2}\times Side $

$ \therefore $ Ratio of area of smaller circle to larger circle $ =\frac{\pi r_1^{2}}{\pi r_2^{2}} $ $ =\frac{\pi \times {{( \frac{a}{2} )}^{2}}}{\pi \times {{( \frac{\sqrt{2}a}{2} )}^{2}}}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}=1:2 $ [here, a = diameter of smaller circle]