Quantitative Aptitude Ques 1673
Question: The diameters of two circles are the side of a square and the diagonal of the square. The ratio of the areas of the smaller circle and the larger circle is
Options:
A) $ 1:4 $
B) $ \sqrt{2}:\sqrt{3} $
C) $ 1:\sqrt{2} $
D) $ 1:2 $
Show Answer
Answer:
Correct Answer: D
Solution:
- Diagonal of a square $ =\sqrt{2}\times Side $
$ \therefore $ Ratio of area of smaller circle to larger circle $ =\frac{\pi r_1^{2}}{\pi r_2^{2}} $ $ =\frac{\pi \times {{( \frac{a}{2} )}^{2}}}{\pi \times {{( \frac{\sqrt{2}a}{2} )}^{2}}}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}=1:2 $ [here, a = diameter of smaller circle]