I. $ x^{2}+5x+6=0 $
II. $ 4y^{2}+24y+35=0 $
A) If $ x>y $
B) If $ x\le y $
C) If $ x<y $
D) If $ x\ge y $
E) If relationship between x and y cannot be established
Correct Answer: E
$ \Rightarrow $ $ x^{2}+3x+2x+6=0 $
$ \Rightarrow $ $ x(x+3)+2(x+3)=0 $
$ \Rightarrow $ $ (x+2)(x+3)=0 $
$ \therefore $ $ x=-2, $ $ -3 $ II. $ 4y^{2}+24y+35=0 $
$ \Rightarrow $ $ 4y^{2}+14y+10y+35=0 $
$ \Rightarrow $ $ 2y(2y+7)+5(2y+7)=0 $
$ \Rightarrow $ $ (2y+5)(2y+7)=0 $
$ \therefore $ $ y=-\frac{5}{2}, $ $ -\frac{7}{2} $ Hence, relationship between x and y cannot be established.