Quantitative Aptitude Ques 1669
Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and give answer. [IBPS (SO) 2014]
I. $ 6x^{2}+5x+1=0 $
II. $ 15y^{2}+8y+1=0 $
Options:
A) If $ x>y $
B) If $ x\le y $
C) If $ x<y $
D) If $ x\ge y $
E) If relationship between x and y cannot be established
Show Answer
Answer:
Correct Answer: B
Solution:
- I. $ 6x^{2}+5x+1=0 $
$ \Rightarrow $ $ 6x^{2}+3x+2x+1=0 $
$ \Rightarrow $ $ 3x(2x+1)+1(2x+1)=0 $
$ \Rightarrow $ $ (3x+1)+(2x+1)=0 $ $ x=\frac{-1}{3}, $ $ -\frac{1}{2} $ II. $ 15y^{2}+8y+1=0 $
$ \Rightarrow $ $ 15y^{2}+5y+3y+1=0 $
$ \Rightarrow $ $ 5y(3y+1)+1(3y+1)=0 $
$ \Rightarrow $ $ (5y+1)(3y+1)=0 $
$ \therefore $ $ y=-\frac{1}{5}, $ $ -\frac{1}{3} $ Hence, $ x\le y $