Quantitative Aptitude Ques 1659

Question: Two light rods $ AB=a+b $ and $ CD=a-b $ symmetrically lying on a horizontal. There are kept intact by two strings AC and BD. The perpendicular distance between rods is a. The length of AC is given by

Options:

A) $ a^{2}+b^{2} $

B) $ a^{2}-b^{2} $

C) $ \sqrt{a^{2}-b^{2}} $

D) $ \sqrt{a^{2}+b^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Since they are symmetrically lying on horizontal plane.

$ \therefore $ $ AC=BD $

$ \therefore $ $ AE=BF=x $ Now, $ AB=(a-b)+2x $ i.e. $ a+b=a-b+2x $
$ \Rightarrow $ $ 2b=2x $

$ \therefore $ $ x=b $ Now, in $ \Delta ACE, $ $ x^{2}+a^{2}=AC^{2} $

$ \Rightarrow $ $ AC^{2}=b^{2}+a^{2} $

$ \therefore $ $ AC=\sqrt{b^{2}+a^{2}} $