Quantitative Aptitude Ques 1640

Question: Directions: In the following questions, two equations numbered I and II have been given. You have to solve both the equations and mark the correct answer. [SBI (PO) 2015]

I. $ 3x^{2}+23x+44=0 $ II. $ 3y^{2}+20y+33=0 $

Options:

A) lf $ x<y $

B) If $ x>y $

C) If $ x\ge y $

D) If $ x\le y $

E) If relationship between x and y cannot be established

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] I. $ 3x^{2}+23x+44=0 $

$ \Rightarrow $ $ 3x^{2}+12x+11x+44=0 $

$ \Rightarrow $ $ 3x,(x+4)+11,(x+4)=0 $

$ \Rightarrow $ $ (3x+11)(x+4)=0\Rightarrow x=-4, $ $ -\frac{11}{3} $ II. $ 3y^{2}+20y+33=0 $

$ \Rightarrow $ $ 3y^{2}+11y+9y+33=0 $

$ \Rightarrow $ $ y,(3y+11)+3,(3y+11)=0 $

$ \Rightarrow $ $ (3y+11)(y+3)=0\Rightarrow y=-,3, $ $ -\frac{11}{3} $ Hence, $ y\ge x $