Question: If O be the circumcentre of a $ \Delta PQR $ and $ \angle QOR=110{}^\circ , $ $ \angle OPR=25{}^\circ , $ then the measure of $ \angle PRQ $ is
Options:
A) $ 50{}^\circ $
B) $ 55{}^\circ $
C) $ 60{}^\circ $
D) $ 65{}^\circ $
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] Given, $ \angle QOR=110{}^\circ , $ $ \angle OPR=25{}^\circ $
$ \angle OPR=\angle ORP=25{}^\circ $
[ $ \because $ angles opposite of equal side are equal
$ \therefore OP=OB=radius $ ]
Now, in $ \Delta QOR, $
$ \angle QOR+\angle OQR+\angle ORQ=180{}^\circ $
[angles sum property]
$ \Rightarrow $ $ \angle QOR+\angle ORQ+\angle ORQ=180{}^\circ $
$ \because $ $ \angle OQR=\angle ORQ $
[angles opposite to equal side in a triangle are equal]
$ \Rightarrow $ $ 2,\angle ORQ=180{}^\circ -110{}^\circ $
$ \Rightarrow $ $ \angle ORQ=\frac{70{}^\circ }{2}=35{}^\circ $
$ \therefore $ $ \angle PRQ=\angle ORP+\angle ORQ=25{}^\circ +35{}^\circ =60{}^\circ $