Quantitative Aptitude Ques 1632

Question: Smallest angle of a triangle is equal to two-third the smallest angle of a quadrilateral. The ratio between the angles of the quadrilateral is 3: 4: 5: 6. Largest angle of the triangle is twice its smallest angle. What is the sum of second largest angle of the triangle and largest angle of the quadrilateral?

Options:

A) $ 160{}^\circ $

B) $ 180{}^\circ $

C) $ 190{}^\circ $

D) $ 170{}^\circ $

E) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let the angles of the quadrilateral be and $ 3x, $ $ 4x, $ $ 5x $ and $ 6x $ respectively. Then, $ 3x+4x+5x+6x=360{}^\circ $

$ \Rightarrow $ $ 18x=360{}^\circ $
$ \Rightarrow $ $ x=20{}^\circ $

$ \therefore $ Smallest angle of the triangle $ =3\times 20\times \frac{2}{3}=40{}^\circ $

$ \therefore $ Largest angle of the triangle $ =40{}^\circ \times 2=80{}^\circ $

$ \therefore $ Second largest angle of triangle $ =180{}^\circ -(40{}^\circ +80{}^\circ )=60{}^\circ $ and largest angle of the quadrilateral $ =6x=6\times 20{}^\circ $ $ =120{}^\circ $ Hence, required sum $ =60{}^\circ +120{}^\circ =180{}^\circ $