Quantitative Aptitude Ques 1611

Question: The value of $ \cot 41{}^\circ \cdot \cot 42{}^\circ \cdot \cot 43{}^\circ \cdot \cot 44{}^\circ $ $ \cdot \cot 45{}^\circ \cdot \cot 46\cdot \cot 47{}^\circ \cdot \cot 48{}^\circ \cdot cot49{}^\circ $ is

Options:

A) 0

B) 1

C) $ \frac{1}{\sqrt{2}} $

D) $ \frac{\sqrt{3}}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ \cot 41{}^\circ \cdot \cot 42{}^\circ \cdot \cot 43{}^\circ \cdot \cot 44{}^\circ $ $ \cdot \cot 45{}^\circ \cdot \cot 46{}^\circ \cdot \cot 47{}^\circ \cdot \cot 48{}^\circ \cdot \cot 49{}^\circ $ $ =\cot (90{}^\circ -49{}^\circ )\cdot \cot (90{}^\circ -48{}^\circ )\cdot \cot (90{}^\circ -47{}^\circ ) $ $ \cdot \cot (90{}^\circ -46{}^\circ )\cdot \cot 45{}^\circ -\cot 46{}^\circ $ $ \cdot \cot 47{}^\circ \cdot \cot 48{}^\circ \cdot \cot 49{}^\circ $ $ =\tan 49{}^\circ \cdot \tan 48{}^\circ \cdot \tan 47{}^\circ \cdot \tan 46{}^\circ \cdot \cot 45{}^\circ $ $ \cdot \cot 46{}^\circ \cdot \cot 47{}^\circ \cdot \cot 48{}^\circ \cdot \cot 49{}^\circ $ $ =1\cdot 1\cdot 1\cdot 1\cdot 1=1 $ $ [\because \cot 45{}^\circ =1,and,\tan \theta \cdot \cot \theta =1] $