Question: If one-fourth of the area of a rectangular plot is $ 2700,m^{2} $ and the width of that plot is 90 m, what is the ratio between the width and length of the plot? [LIC (ADO) 2015]
Options:
A) 3 : 4
B) 4 : 3
C) 3 : 1
D) 1 : 3
E) 4 : 1
Show Answer
Answer:
Correct Answer: A
Solution:
- Let the area of the rectangular plot $ =x,m^{2} $
Given, $ \frac{1}{4}th $ of the area $ =2700,m^{2} $
Then, $ \frac{x}{4}=2700 $
$ \therefore $ $ x=10800,m^{2} $
$ Width=90,m $
Length $ \times $ Width = 10800
$ \Rightarrow $ Length $ \times $ 90 = 10800
$ \therefore $ Length = 120 m
Required ratio $ =\frac{Width}{Length}=\frac{90}{120}=\frac{3}{4}=3:4 $