Quantitative Aptitude Ques 160

Question: If a, b, c, d and e are in continued proportion, then find out the value of $ \frac{a}{e}. $

Options:

A) $ \frac{a^{3}}{b^{3}} $

B) $ \frac{b^{3}}{a^{3}} $

C) $ \frac{a^{4}}{b^{4}} $

D) $ \frac{a^{5}}{b^{5}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Since, a, b, c, d and e are in continued proportion.

$ \therefore $ $ \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e} $

$ \Rightarrow $ $ \frac{e}{d}=\frac{d}{c}=\frac{c}{b}=\frac{b}{a} $ Now, $ c=\frac{b^{2}}{a} $ $ [ \because \frac{c}{b}=\frac{b}{a} ] $

$ \Rightarrow $ $ d=\frac{c^{2}}{b}=\frac{b^{4}}{a^{2}}\cdot \frac{1}{b}=\frac{b^{3}}{a^{2}} $

$ \Rightarrow $ $ e=\frac{d^{2}}{c}=\frac{b^{6}}{a^{4}}\cdot \frac{a}{b^{2}}=\frac{b^{4}}{a^{3}} $

$ \Rightarrow $ $ \frac{a}{e}=\frac{a}{(b^{4}/a^{3})}=\frac{a^{4}}{b^{4}} $