Quantitative Aptitude Ques 1575

Question: A sum of money at compound interest amounts to thrice itself in 3 yr. In how many years will it be 9 times itself?

Options:

A) 9 yr

B) 27 yr

C) 6 yr

D) 3 yr

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let $ A=Rs.3x, $ $ P=Rs.x $ $ \because $ $ A=P{{( 1+\frac{r}{100} )}^{t}} $ Then, $ 3x=x{{( 1+\frac{r}{100} )}^{3}} $
    $ \Rightarrow $ $ 3=1{{( 1+\frac{r}{100} )}^{3}} $ On squaring both sides, we get $ 9=1{{( 1+\frac{r}{100} )}^{6}} $ It will become 9 times itself in 6 yr Alternate Method
    If a certain sum, at compound interest becomes z times in $ t _1 $ yr and y times in $ t _2 $ yr. Then, $ {x^{\frac{1}{t _1}}}={y^{\frac{1}{t _2}}} $ Given, $ t _1=3yr, $ $ t _2=?, $ $ x=3 $ and $ y=9 $

$ \Rightarrow $ $ {{(3)}^{\frac{1}{3}}}={{(9)}^{\frac{1}{t _2}}} $
$ \Rightarrow $ $ {{(3)}^{\frac{1}{3}}}={{(3)}^{\frac{2}{t _2}}} $ On comparing both sides, we get $ \frac{2}{t _2}=\frac{1}{3} $

$ \therefore $ $ t _2=6yr $

$ \therefore $ The sum will become 9 times itself in 6 yr.