Quantitative Aptitude Ques 1569

Question: In the given figure, ABCD is a trapezium. EF is parallel to AD and BC. Then, $ \angle y $ is equal to [CDS 2012]

Options:

A) $ 30{}^\circ $

B) $ 45{}^\circ $

C) $ 60{}^\circ $

D) $ 65{}^\circ $

Show Answer

Answer:

Correct Answer: C

Solution:

  • From figure,
    $ x{}^\circ =z{}^\circ =50{}^\circ $ [alternate interior angles] $ \theta +z{}^\circ =180{}^\circ $ [linear pair]
    $ \theta =180{}^\circ -50{}^\circ =130{}^\circ $ Now, in quadrilateral AQFD, $ x{}^\circ +y{}^\circ +120{}^\circ +\theta =360{}^\circ $ [ $ \therefore $ the sum of all angles in a quadrilateral is equal to $ 360{}^\circ $ ]

$ \Rightarrow $ $ 50{}^\circ +y{}^\circ +120{}^\circ +130{}^\circ =360{}^\circ $

$ \therefore $ $ y=360{}^\circ -300{}^\circ =60{}^\circ $