Quantitative Aptitude Ques 1568

Question: $ \frac{ \begin{aligned} & {{(2.247)}^{3}}+{{(1.730)}^{3}}+{{(1.023)}^{3}} \\ & -3\times 2.247\times 1.730\times 1.023 \\ \end{aligned}}{ \begin{aligned} & {{(2.247)}^{2}}+{{(1.730)}^{2}}+{{(1.023)}^{2}}-2.247 \\ & \times 1.730-1.730\times 1.023-2.247\times 1.023 \\ \end{aligned}}=? $

Options:

A) 1.730

B) 4

C) 5

D) 5.247

Show Answer

Answer:

Correct Answer: C

Solution:

  • We know that, $ a^{3}+b^{3}+c^{3}-3abc $ $ =(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca) $

$ \Rightarrow $ $ (a+b+c)=( \frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}-ab-bc-ca} ) $ … (i) Given that, $ =\frac{{{(2.47)}^{3}}+{{(1.730)}^{3}}+{{(1.023)}^{3}}-3\times 2.47\times 1.730\times 1.023}{ \begin{aligned} & {{(2.247)}^{2}}+{{(1.730)}^{2}}+{{(1.023)}^{2}}-(2.247)\times (1.730) \\ & -(1.730\times 1.023)-(2.247)\times 1.023) \\ \end{aligned}} $ $ =(2.247+1.730+1.023) $ [from Eq.(i)] $ =5.000=5 $