Question: From the circumcentre I of the $ \Delta ABC, $ perpendicular ID is drawn on BC. If $ \angle BAC=60{}^\circ , $ then the value of $ \angle BID $ is.
Options:
A) $ 75{}^\circ $
B) $ 60{}^\circ $
C) $ 45{}^\circ $
D) $ 80{}^\circ $
Show Answer
Answer:
Correct Answer: B
Solution:
- From figure,
$ \angle BIC=2\times \angle BAC=120{}^\circ $
[ $ \because $ Angle made by same chord in the center of the circle is double to angle at circumference of the circle]
and $ IB=IC $ [
$ \therefore $ radius of the circle]
$ \therefore $ $ \angle IBD=\angle ICD=\frac{180{}^\circ -120{}^\circ }{2}=30{}^\circ $
Now, $ \angle BID=90{}^\circ -30{}^\circ =60{}^\circ $