Quantitative Aptitude Ques 1567

Question: From the circumcentre I of the $ \Delta ABC, $ perpendicular ID is drawn on BC. If $ \angle BAC=60{}^\circ , $ then the value of $ \angle BID $ is.

Options:

A) $ 75{}^\circ $

B) $ 60{}^\circ $

C) $ 45{}^\circ $

D) $ 80{}^\circ $

Show Answer

Answer:

Correct Answer: B

Solution:

  • From figure, $ \angle BIC=2\times \angle BAC=120{}^\circ $ [ $ \because $ Angle made by same chord in the center of the circle is double to angle at circumference of the circle]
    and $ IB=IC $ [ $ \therefore $ radius of the circle]

$ \therefore $ $ \angle IBD=\angle ICD=\frac{180{}^\circ -120{}^\circ }{2}=30{}^\circ $ Now, $ \angle BID=90{}^\circ -30{}^\circ =60{}^\circ $