Quantitative Aptitude Ques 1564

Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ (6x^{2}+17)-(3x^{2}+20)=0 $ II. $ (5y^{2}-12)-(9y^{2}-16)=0 $

Options:

A) If $ x\ge y $

B) If $ x<y $

C) If $ x\ge y $

D) If $ x>y $

E) If $ x=y $ or relationship cannot be established

Show Answer

Answer:

Correct Answer: E

Solution:

  • I. $ (6x^{2}+17)-(3x^{2}+20)=0 $

$ \Rightarrow $ $ (6x^{2}-3x^{2})+(17-20)=0 $

$ \Rightarrow $ $ 3x^{2}-3=0 $
$ \Rightarrow $ $ 3x^{2}=3 $

$ \therefore $ $ x=\pm 1 $ II. $ (5y^{2}-12)-(9y^{2}-16)=0 $

$ \Rightarrow $ $ (5y^{2}-9y^{2})+(-12+16)=0 $

$ \Rightarrow $ $ -4y^{2}+4=0 $

$ \therefore $ $ y=\pm 1 $ Hence, $ x=y $ or relationship cannot be established.