Quantitative Aptitude Ques 1563
Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and give answer.
I. $ 6x^{2}-29x+35=0 $ II. $ 3y^{2}-11y+10=0 $
Options:
A) If $ x\ge y $
B) If $ x<y $
C) If $ x\ge y $
D) If $ x>y $
E) If $ x=y $ or relationship cannot be established
Show Answer
Answer:
Correct Answer: D
Solution:
- I. $ 6x^{2}-29x+35=0 $
$ \Rightarrow $ $ 6x^{2}-15x-14x+35=0 $
$ \Rightarrow $ $ 3x(2x-5)-7(2x-5)=0 $
$ \Rightarrow $ $ (3x-7)(2x-5)=0 $
$ \Rightarrow $ $ x=\frac{7}{3}, $ $ \frac{5}{2} $ II. $ 3y^{2}-11y+10=0 $
$ \Rightarrow $ $ 3y^{2}-6y-5y+10=0 $
$ \Rightarrow $ $ 3y(y-2)-5(y-2)=0 $
$ \Rightarrow $ $ (3y-5)(y-2)=0 $
$ \Rightarrow $ $ y=\frac{5}{3}, $ $ y=2 $
Hence, $ x>y $