Quantitative Aptitude Ques 1563

Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and give answer.

I. $ 6x^{2}-29x+35=0 $ II. $ 3y^{2}-11y+10=0 $

Options:

A) If $ x\ge y $

B) If $ x<y $

C) If $ x\ge y $

D) If $ x>y $

E) If $ x=y $ or relationship cannot be established

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 6x^{2}-29x+35=0 $

$ \Rightarrow $ $ 6x^{2}-15x-14x+35=0 $

$ \Rightarrow $ $ 3x(2x-5)-7(2x-5)=0 $

$ \Rightarrow $ $ (3x-7)(2x-5)=0 $

$ \Rightarrow $ $ x=\frac{7}{3}, $ $ \frac{5}{2} $ II. $ 3y^{2}-11y+10=0 $

$ \Rightarrow $ $ 3y^{2}-6y-5y+10=0 $

$ \Rightarrow $ $ 3y(y-2)-5(y-2)=0 $

$ \Rightarrow $ $ (3y-5)(y-2)=0 $
$ \Rightarrow $ $ y=\frac{5}{3}, $ $ y=2 $ Hence, $ x>y $