Quantitative Aptitude Ques 1475

Question: Directions: In these questions two equations are given. You have to solve both the equations and give answer.

I. $ x^{2}-20x+91=0 $
II. $ y^{2}-32y+247=0 $

Options:

A) If $ x<y $

B) If $ x\le y $

C) If $ x>y $

D) If $ x\ge y $

E) If relationship between x and y cannot be established

Show Answer

Answer:

Correct Answer: B

Solution:

  • I. $ x^{2}-20x+91=0 $

$ \Rightarrow $ $ x^{2}-13x-7x+91=0 $

$ \Rightarrow $ $ x(x-13)-7(x-13)=0 $

$ \Rightarrow $ $ (x-7)(x-13)=0 $

$ \therefore $ $ x=13, $ $ 7 $ II. $ y^{2}-32y+247=0 $

$ \Rightarrow $ $ y^{2}-19y-13y+247=0 $

$ \Rightarrow $ $ y(y-19)-13(y-19)=0 $

$ \Rightarrow $ $ (y-13)(y-19)=0 $

$ \therefore $ $ y=13, $ $ 19 $ Hence, $ x\le y $