I. $ x^{2}-20x+91=0 $
II. $ y^{2}-32y+247=0 $
A) If $ x<y $
B) If $ x\le y $
C) If $ x>y $
D) If $ x\ge y $
E) If relationship between x and y cannot be established
Correct Answer: B
$ \Rightarrow $ $ x^{2}-13x-7x+91=0 $
$ \Rightarrow $ $ x(x-13)-7(x-13)=0 $
$ \Rightarrow $ $ (x-7)(x-13)=0 $
$ \therefore $ $ x=13, $ $ 7 $ II. $ y^{2}-32y+247=0 $
$ \Rightarrow $ $ y^{2}-19y-13y+247=0 $
$ \Rightarrow $ $ y(y-19)-13(y-19)=0 $
$ \Rightarrow $ $ (y-13)(y-19)=0 $
$ \therefore $ $ y=13, $ $ 19 $ Hence, $ x\le y $