Quantitative Aptitude Ques 1474

Question: Directions: In these questions two equations are given. You have to solve both the equations and give answer.

I. $ 3x^{2}-20x-32=0 $
II. $ 2y^{2}-3y-20=0 $

Options:

A) If $ x<y $

B) If $ x\le y $

C) If $ x>y $

D) If $ x\ge y $

E) If relationship between x and y cannot be established

Show Answer

Answer:

Correct Answer: D

Solution:

  • I. $ 3x^{2}-20x-32=0 $

$ \Rightarrow $ $ 3x^{2}-12x-8x-32=0 $

$ \Rightarrow $ $ 3x(x-4)-8(x-4)=0 $

$ \Rightarrow $ $ (3x-8)(x-4)=0 $

$ \therefore $ $ x=\frac{8}{3}, $ $ 4 $ II. $ 2y^{2}-3y-20=0 $

$ \Rightarrow $ $ 2y^{2}-8y+5y-20=0 $

$ \Rightarrow $ $ 2y(y-4)+5(y-4)=0 $

$ \Rightarrow $ $ (2y+5)(y-4)=0 $

$ \therefore $ $ y=4, $ $ -\frac{5}{2} $ Hence, $ x\ge y $