Quantitative Aptitude Ques 1455

Question: A can do $ \frac{7}{8} $ of work in 28 days, B can do $ \frac{5}{6} $ of the same work in 20 days. The number of days they will take to complete. If they do it together, is [SSG (CPO) 2014]

Options:

A) $ 15\frac{3}{7}days $

B) $ 17\frac{3}{5}days $

C) $ 14\frac{5}{7}days $

D) $ 13\frac{5}{7}days $

Show Answer

Answer:

Correct Answer: D

Solution:

  • A can do $ \frac{7}{8} $ work in 28 days.

$ \therefore $ He alone can do the total work in $ 28\times \frac{8}{7} $ days = 32 days. Now, one day work of $ A=\frac{1}{32} $ B can do $ \frac{5}{6} $ work in 20 days He alone can do the total work in $ 20\times \frac{6}{5} $ days = 24 days Now, one day work of $ B=\frac{1}{24} $

$ \therefore $ One day work of A and 8 working together $ =\frac{1}{24}+\frac{1}{32}=\frac{4+3}{96}=\frac{7}{96} $

$ \therefore $ Number of days required by A and B working together $ =\frac{96}{7}=13\frac{5}{7}days $