Quantitative Aptitude Ques 1452

Question: On what sum does the difference between the compound interest and the simple interest for 3 yr at 10% is Rs. 31?

Options:

A) Rs. 1500

B) Rs. 1200

C) Rs. 1100

D) Rs. 1000

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the sum be Rs. $ x. $ $ r=10 $ %and $ t=3yr $ $ SI=\frac{x\times r\times t}{100} $ $ SI=\frac{x\times 10\times 3}{100}=\frac{3}{10}x $ $ CI=[ {{( 1+\frac{r}{100} )}^{t}}-1 ]x=[ {{( 1+\frac{10}{100} )}^{3}}-1 ]x $ $ =[ {{( \frac{11}{10} )}^{3}}-1 ]x=( \frac{1331}{1000}-1 )x=\frac{331}{1000}x $ According to the question, $ CI-SI=31 $

$ \Rightarrow $ $ \frac{331}{1000}x-\frac{3}{10}x=31 $

$ \Rightarrow $ $ \frac{(331-300)}{1000}x=31 $

$ \Rightarrow $ $ \frac{31}{1000}x=31 $

$ \therefore $ $ x=1000 $

$ \therefore $ $ Sum=Rs\text{. 1000} $ Alternate Method When difference between the CI and SI on a certain sum of money for 3 yr at r % rate is Rs. x, then Difference between SI and CI $ =\frac{{{\Pr }^{2}}(300+r)}{{{(100)}^{3}}} $

$ \Rightarrow $ $ 31=\frac{P\times {{(10)}^{2}}(300+10)}{1000000} $

$ \Rightarrow $ $ 31=\frac{P\times 100\times 310}{1000000} $

$ \Rightarrow $ $ 31=\frac{31P}{1000} $

$ \Rightarrow $ $ P=1000. $