A) $ 3\pi :7 $
B) $ 3:4 $
C) $ 25\pi :72 $
D) $ 32\pi :115 $
Correct Answer: C
$ \therefore $ $ DH=HG=GC=\frac{6a}{3}=2a $ $ HM=MG=\frac{2a}{2}=a=SM $ $ NQ=a $ (also) and $ SQ=SM+MN+NQ $ $ =a+3a+a=5a $ Since, diagonal of square, $ SQ=5a $ Diameter of circle, SQ = Diagonal of square, SQ Radius of the circle $ =\frac{5a}{2} $ Area of the circle $ =\pi \times {{( \frac{5a}{2} )}^{2}} $
$ \therefore $ $ \frac{Areaofcircle}{Areaofrectangle}=\frac{25/4(a^{2}\pi )}{3a\times 6a}=\frac{25\pi }{72} $