Question: In the given diagram, $ \Delta ABC $ is an isosceles right angled triangle, in which a rectangle is inscribed in such a way that the length of the rectangle is twice of breadth. Q and R lie on the hypotenuse; P and S lie on the two different smaller sides of the triangle. What is the ratio of the areas of the rectangle and that of triangle?
Options:
A) $ \sqrt{2}:1 $
B) $ 1:\sqrt{2} $
C) $ 1:2 $
D) $ \sqrt{3}:2 $
Show Answer
Answer:
Correct Answer: C
Solution:
- PTUS is a square inscribed by a square ABCD.
Let each side of the square ABCD be a.
Then, area of square ABCD $ =a^{2} $
Also, $ PU=ST=a $
$ \frac{Areaof\square PTUS}{Areaof\square ABCD}=\frac{a^{2}/2}{a^{2}}=\frac{1}{2} $
$ \therefore $ $ \frac{AreaofPQRS}{2\times Areaof\Delta ABC}=\frac{1}{2} $
Now, $ ar\square PTUS=ar\Delta ABC $
$ \Rightarrow $ $ 2arPQRS=ar,\Delta ABC $
$ \therefore $ $ \frac{ar(PQRS)}{ar(\Delta ABC)}=\frac{1}{2} $