Quantitative Aptitude Ques 1425

Question: Directions: In these questions two equations numbered I and II are given.

You have to solve both the equations and give answer. I. $ x^{2}+10x+24=0 $
II. $ 4y^{2}-17y+18=0 $

Options:

A) If $ x\le y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x>y $

E) If relationship between x and .y cannot be established

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ x^{2}+10x+24=0 $

$ \Rightarrow $ $ x^{2}+6x+4x+24=0 $

$ \Rightarrow $ $ x(x+6)+4(x+6)=0 $

$ \Rightarrow $ $ (x+4)(x+6)=0 $

$ \therefore $ $ x=-4, $ $ -6 $ II. $ 4y^{2}-17y+18=0 $

$ \Rightarrow $ $ 4y^{2}-8y-9y+18=0 $

$ \Rightarrow $ $ 4y(y-2)-9(y-2)=0 $

$ \Rightarrow $ $ (4y-9)(y-2)=0 $

$ \therefore $ $ y=\frac{9}{4}, $ $ 2 $ Hence, $ x<y $