You have to solve both the equations and give answer.
I. $ x^{2}+10x+24=0 $
II. $ 4y^{2}-17y+18=0 $
A) If $ x\le y $
B) If $ x\ge y $
C) If $ x<y $
D) If $ x>y $
E) If relationship between x and .y cannot be established
Correct Answer: C
$ \Rightarrow $ $ x^{2}+6x+4x+24=0 $
$ \Rightarrow $ $ x(x+6)+4(x+6)=0 $
$ \Rightarrow $ $ (x+4)(x+6)=0 $
$ \therefore $ $ x=-4, $ $ -6 $ II. $ 4y^{2}-17y+18=0 $
$ \Rightarrow $ $ 4y^{2}-8y-9y+18=0 $
$ \Rightarrow $ $ 4y(y-2)-9(y-2)=0 $
$ \Rightarrow $ $ (4y-9)(y-2)=0 $
$ \therefore $ $ y=\frac{9}{4}, $ $ 2 $ Hence, $ x<y $