Quantitative Aptitude Ques 1424

Question: Directions: In these questions two equations numbered I and II are given.

You have to solve both the equations and give answer. I. $ 6x^{2}+41x+63=0 $
II. $ 4y^{2}+8y+3=0 $

Options:

A) If $ x\le y $

B) If $ x\ge y $

C) If $ x<y $

D) If $ x>y $

E) If relationship between x and .y cannot be established

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ 6x^{2}+41x+63=0 $

$ \Rightarrow $ $ 6x^{2}+27x+14x+63=0 $

$ \Rightarrow $ $ 3x(2x+9)+7(2x+9)=0 $

$ \Rightarrow $ $ (3x+7)(2x+9)=0 $

$ \therefore $ $ x=-\frac{7}{3}x=-\frac{9}{2} $ II. $ 4y^{2}+8y+3=0 $

$ \Rightarrow $ $ 4y^{2}+6y+2y+3=0 $

$ \Rightarrow $ $ 2y(2y+3)+1(2y+3)=0 $

$ \Rightarrow $ $ (2y+1)(2y+3)=0 $

$ \therefore $ $ y=-\frac{1}{2}, $ $ -\frac{3}{2} $ Hence, $ x<y $