You have to solve both the equations and give answer.
I. $ 6x^{2}+41x+63=0 $
II. $ 4y^{2}+8y+3=0 $
A) If $ x\le y $
B) If $ x\ge y $
C) If $ x<y $
D) If $ x>y $
E) If relationship between x and .y cannot be established
Correct Answer: C
$ \Rightarrow $ $ 6x^{2}+27x+14x+63=0 $
$ \Rightarrow $ $ 3x(2x+9)+7(2x+9)=0 $
$ \Rightarrow $ $ (3x+7)(2x+9)=0 $
$ \therefore $ $ x=-\frac{7}{3}x=-\frac{9}{2} $ II. $ 4y^{2}+8y+3=0 $
$ \Rightarrow $ $ 4y^{2}+6y+2y+3=0 $
$ \Rightarrow $ $ 2y(2y+3)+1(2y+3)=0 $
$ \Rightarrow $ $ (2y+1)(2y+3)=0 $
$ \therefore $ $ y=-\frac{1}{2}, $ $ -\frac{3}{2} $ Hence, $ x<y $