Quantitative Aptitude Ques 1421

Question: The ascending order of $ {{(2.89)}^{0.5}}, $ $ 2-{{(0.5)}^{2}}, $ $ \sqrt{3} $ and $ 3\sqrt{0.008} $ is

Options:

A) $ 2-{{(0.5)}^{2}},\sqrt{3},\sqrt[3]{0.008},{{(2.89)}^{0.5}} $

B) $ \sqrt[3]{0.008},{{(2.89)}^{0.5}},\sqrt{3},2-{{(0.5)}^{2}} $

C) $ \sqrt[3]{0.008},\sqrt{3},,{{(2.89)}^{0.5}},2-{{(0.5)}^{2}} $

D) $ \sqrt{3},\sqrt[3]{0.008},2-{{(0.5)}^{2}},{{(2.89)}^{0.5}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {{(2,89)}^{0.5}}={{(2.89)}^{1/2}}={{[{{(1.7)}^{2}}]}^{1/2}}=1.7 $ $ 2-{{(0.5)}^{2}}=2-0.25=1.75 $ $ \sqrt{3}=1.732 $ $ \sqrt[3]{0.008}=0.2 $

$ \therefore $ Ascending order is $ \sqrt[3]{0.008}<{{(2.89)}^{0.5}}<\sqrt{3}<2-{{(0.5)}^{2}} $