Quantitative Aptitude Ques 1419
Question: The middle term(s) of the series $ 2+4+6+…+198 $ is
Options:
A) 98
B) 96
C) 84
D) 100
Show Answer
Answer:
Correct Answer: D
Solution:
- It is an arithmetic series. where, $ a=2, $ $ T _{n}=198, $ $ d= $ common difference $ =2 $ Number of terms $ =n $
$ \therefore $ $ T _{n}=a+(n-1),d $
$ \Rightarrow $ $ 198=2+(n-1),2 $
$ \Rightarrow $ $ 2(n-1)=198-2=196 $
$ \Rightarrow $ $ n-1\frac{196}{2}=98 $
$ \Rightarrow $ $ n=99 $
$ \therefore $ Middle term $ =\frac{n+1}{2}=\frac{99+1}{2}= $ 50th term
$ \therefore $ $ T _{50}=2+(50-1),2 $ $ =2+98=100 $