Quantitative Aptitude Ques 1419

Question: The middle term(s) of the series $ 2+4+6+…+198 $ is

Options:

A) 98

B) 96

C) 84

D) 100

Show Answer

Answer:

Correct Answer: D

Solution:

  • It is an arithmetic series. where, $ a=2, $ $ T _{n}=198, $ $ d= $ common difference $ =2 $ Number of terms $ =n $

$ \therefore $ $ T _{n}=a+(n-1),d $

$ \Rightarrow $ $ 198=2+(n-1),2 $

$ \Rightarrow $ $ 2(n-1)=198-2=196 $

$ \Rightarrow $ $ n-1\frac{196}{2}=98 $
$ \Rightarrow $ $ n=99 $

$ \therefore $ Middle term $ =\frac{n+1}{2}=\frac{99+1}{2}= $ 50th term

$ \therefore $ $ T _{50}=2+(50-1),2 $ $ =2+98=100 $