Question: If $ 2\cos \theta -\sin \theta =\frac{1}{\sqrt{2}}(0{}^\circ <\theta <90{}^\circ ), $ then the value of $ 2\sin \theta +\cos \theta $ is
Options:
A) $ \frac{1}{\sqrt{2}} $
B) $ \sqrt{2} $
C) $ \frac{3}{\sqrt{2}} $
D) $ \frac{\sqrt{2}}{3} $
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, $ 2\cos \theta -\sin \theta =\frac{1}{\sqrt{2}} $ … (i)
Let $ 2\sin \theta +\cos \theta =x $ … (ii)
On squaring Eqs. (i) and (ii) and then adding, we get
$ 4{{\cos }^{2}}\theta +{{\sin }^{2}}-4\sin \theta \cdot \cos \theta +4{{\sin }^{2}}\theta $
$ +{{\cos }^{2}}\theta +4\sin \theta \cos \theta =\frac{1}{2}+x^{2} $
$ \Rightarrow $ $ 4({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )+({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )=\frac{1}{2}+x^{2} $
$ \Rightarrow $ $ 4+1=\frac{1}{2}+x^{2} $ $ [\because {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1] $
$ \Rightarrow $ $ x^{2}=5-\frac{1}{2}=\frac{9}{2} $
$ \therefore $ $ x=\frac{3}{\sqrt{2}} $