Quantitative Aptitude Ques 1409

Question: The area (in sq units) bounded by the lines $ x=0, $ $ y=0, $ $ x+y=1 $ and $ 2x+3y=6 $ is

Options:

A) 2

B) $ 2\frac{1}{3} $

C) $ 2\frac{1}{2} $

D) 3

Show Answer

Answer:

Correct Answer: C

Solution:

  • Given tines are $ x=0 $ … (i) $ y=0 $ … (ii) $ x+y=1 $ … (iii) $ 2x+3y=6 $ … (iv) $ x=0 $ is the equation of Y-axis. $ y=0 $ is the equation of X-axis. On putting $ x=0 $ in Eq. (iii), we get $ y=1 $ On putting $ y=0 $ in Eq. (iii), we get $ x=1 $ On putting $ x=0 $ in Eq. (iv), we get $ 3y=6 $
    $ \Rightarrow $ $ y=2 $ On putting $ y=0 $ in Eq. (iv), we get $ 2x=6 $
    $ \Rightarrow $ $ x=3 $

$ \therefore $ $ OB=1 $

$ \Rightarrow $ $ OA=1 $
$ \Rightarrow $ $ OD=3 $ and $ OC=2 $

$ \therefore $ Required area $ =Areaof\Delta OCD-Areaof\Delta OAB $ $ =\frac{1}{2}\times 3\times 2-\frac{1}{2}\times 1\times 1 $ $ =3-\frac{1}{2}=2\frac{1}{2}squnits $