Question: The area (in sq units) bounded by the lines $ x=0, $ $ y=0, $ $ x+y=1 $ and $ 2x+3y=6 $ is
Options:
A) 2
B) $ 2\frac{1}{3} $
C) $ 2\frac{1}{2} $
D) 3
Show Answer
Answer:
Correct Answer: C
Solution:
- Given tines are
$ x=0 $ … (i)
$ y=0 $ … (ii)
$ x+y=1 $ … (iii)
$ 2x+3y=6 $ … (iv)
$ x=0 $ is the equation of Y-axis.
$ y=0 $ is the equation of X-axis.
On putting $ x=0 $ in Eq. (iii), we get $ y=1 $
On putting $ y=0 $ in Eq. (iii), we get $ x=1 $
On putting $ x=0 $ in Eq. (iv), we get
$ 3y=6 $
$ \Rightarrow $ $ y=2 $
On putting $ y=0 $ in Eq. (iv), we get
$ 2x=6 $
$ \Rightarrow $ $ x=3 $
$ \therefore $ $ OB=1 $
$ \Rightarrow $ $ OA=1 $
$ \Rightarrow $ $ OD=3 $
and $ OC=2 $
$ \therefore $ Required area
$ =Areaof\Delta OCD-Areaof\Delta OAB $
$ =\frac{1}{2}\times 3\times 2-\frac{1}{2}\times 1\times 1 $
$ =3-\frac{1}{2}=2\frac{1}{2}squnits $