Quantitative Aptitude Ques 1391

Question: An aeroplane first flew with a speed of 440 km/h and covered a certain distance. It still had to cover 770 km less than what it had already covered, but it flew with a speed of 660 km/h. The average speed for the entire flight was 500 km/h. Find the total distance covered.

Options:

A) 3250 km

B) 2750 km

C) 4400 km

D) 1375 km

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let x be the first lap of the flight, Then, the second lap will be $ (x-770)km. $ Total distance $ =(2x-770)km $ Let be the total time of journey

$ \Rightarrow $ $ \frac{x}{440}+(x-770)/660=t $ … (i) $ 500t=2x-770 $ … (ii) From Eq. (i), $ 660x+440x-770\times 440=660\times 440t $

$ \Rightarrow $ $ 6x+4x-770\times 4=6\times 440t $

$ \Rightarrow $ $ 6x+4x-3080=2640t $

$ \Rightarrow $ $ 3x+2x-1540=1320t $ … (iii)
From Eq. (ii), $ 2x-770=500t $ … (iv) On subtracting Eqs. (iii) and (vi), we get $ 3x-770=820t $ … (v) From Eqs. (iv) and (v), (v) and (iv), then $ x=320t $ Putting the value of x in Eq. (iii), we have $ 5\times 320t-1540=1320t $

$ \Rightarrow $ $ 280t=1540 $
$ \Rightarrow $ $ t=5.5 $

$ \Rightarrow $ $ x=320\times 5.5=1760 $ Total distance $ =2x-770=2\times 1760-770=2750km $