Quantitative Aptitude Ques 1371

Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and find the correct option.

I. $ 2x^{2}-13x+21=0 $
II. $ 5y^{2}-22y+21=0 $

Options:

A) $ x<y $

B) $ x>y $

C) $ k\ge y $

D) $ k\le y $

E) Relationship between x and y cannot be established

Show Answer

Answer:

Correct Answer: C

Solution:

  • I. $ 2x^{2}-13x+21=0 $

$ \Rightarrow $ $ 2x^{2}-6x-7x+21=0 $

$ \Rightarrow $ $ 2x(x-3)-7(x-3)=0 $

$ \Rightarrow $ $ (x-3)(2x-7)=0 $
$ \Rightarrow $ $ x=3, $ $ x=\frac{7}{2} $ II. $ 5y^{2}-22y+21=0 $

$ \Rightarrow $ $ 5y^{2}-15y-7y+21=0 $

$ \Rightarrow $ $ 5y(y-3)-7(y-3)=0 $

$ \Rightarrow $ $ (5y-7)(y-3)=0 $
$ \Rightarrow $ $ y=3, $ $ y=\frac{7}{5} $ Hence, $ x\ge y $