Quantitative Aptitude Ques 1370

Question: Directions: In these questions two equations numbered I and II are given. You have to solve both the equations and find the correct option.

I. $ 4x^{2}-29x+45=0 $
II. $ 3y^{2}-19y+28=0 $

Options:

A) $ x<y $

B) $ x>y $

C) $ k\ge y $

D) $ k\le y $

E) Relationship between x and y cannot be established

Show Answer

Answer:

Correct Answer: E

Solution:

  • I. $ 4x^{2}-29x+45=0 $

$ \Rightarrow $ $ 4x^{2}-20x-9x+45=0 $

$ \Rightarrow $ $ 4x(x-5)-9(x-5)=0 $

$ \Rightarrow $ $ (4x-9)(x-5)=0 $
$ \Rightarrow $ $ x=5, $ $ x=\frac{9}{4} $ II. $ 3y^{2}-19y+28=0 $

$ \Rightarrow $ $ 3y^{2}-12y-7y+28=0 $

$ \Rightarrow $ $ 3y(y-4)-7(y-4)=0 $

$ \Rightarrow $ $ (3y-7)(y-4)=0 $
$ \Rightarrow $ $ y=4, $ $ y=\frac{7}{3} $ Hence, relationship between x and y cannot be established.