Quantitative Aptitude Ques 1365

Question: In $ \Delta ABC, $ D and E are points on sides AB and AC, such that $ DE||BC. $ If $ AD=x, $ $ DB=x-2, $ $ AE=x+2, $ $ EC=x-1, $ then the value of x is

Options:

A) 4

B) 2

C) 1

D) 8

Show Answer

Answer:

Correct Answer: A

Solution:

  • Since, $ DE||BC $

$ \therefore $ $ \frac{AD}{DB}=\frac{AE}{EC} $ [by basic proportionality theorem or Thales theorem]

$ \Rightarrow $ $ \frac{x}{x-2}=\frac{x+2}{x-1} $

$ \Rightarrow $ $ x^{2}-x=x^{2}-{{(2)}^{2}} $

$ \Rightarrow $ $ x^{2}-x=x^{2}-4 $

$ \Rightarrow $ $ -x=-4 $

$ \therefore $ $ x=4 $