Quantitative Aptitude Ques 1364

Question: The ratio of weekly incomes of A and B is 9: 7 and the ratio of their expenditures is 4: 3. If each saves Rs. 200 per week, then the sum of their weekly incomes in

Options:

A) Rs. 3600

B) Rs. 3200

C) Rs. 4800

D) Rs. 5600

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let As and B’s weekly incomes be Rs. $ 9x $ and Rs. $ 7x $ and their expenditures be Rs. $ 4y $ and Rs. $ 3y $ respectively.

$ \therefore $ $ 9x-4y=200 $ … (i) and $ 7x-3y=200 $ …(ii)

$ \Rightarrow $ $ 9x-4y=7x-3y $

$ \Rightarrow $ $ 9x-7x=4y-3y $

$ \Rightarrow $ $ 2x=y $ … (iii) From Eq. (i), $ 9x-4y=200 $

$ \Rightarrow $ $ 9x-8x=200 $

$ \therefore $ $ x=200 $

$ \therefore $ Sum of their weekly incomes $ =16x=16\times 200 $ $ =Rs\text{.}3200 $ Alternate Method Let A’s income $ =Rs\text{.}9x $ B’s income $ =Rs\text{.}7x $ According to the question, $ \frac{9x-200}{7x-200}=\frac{4}{3} $

$ \Rightarrow $ $ 27x-600=28x-800 $

$ \Rightarrow $ $ x=200 $ A’s income $ =9\times 200=Rs\text{. 1800} $ and B’s income $ =7\times 200=Rs\text{. 1400} $ Sum $ =1400+1800=Rs\text{. 3200} $