Quantitative Aptitude Ques 1363

Question: Two numbers are such that the square of one is 224 less than 8 times the square of the other. If the numbers are in the ratio of 3 : 4, then their values are

Options:

A) 12, 16

B) 6, 8

C) 9, 12

D) 12, 9

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let the numbers be 3x and 4x, respectively. Then, according to the question $ {{(4x)}^{2}}=8\times {{(3x)}^{2}}-224 $

$ \Rightarrow $ $ 16x^{2}=72x^{2}-224 $
$ \Rightarrow $ $ 72x^{2}-16x^{2}=224 $

$ \Rightarrow $ $ 56x^{2}=224 $
$ \Rightarrow $ $ x^{2}=\frac{224}{56}=4 $

$ \Rightarrow $ $ x=\sqrt{4}=2 $

$ \therefore $ Numbers = 6 and 8