Question: Two numbers are such that the square of one is 224 less than 8 times the square of the other. If the numbers are in the ratio of 3 : 4, then their values are
Options:
A) 12, 16
B) 6, 8
C) 9, 12
D) 12, 9
Show Answer
Answer:
Correct Answer: B
Solution:
- Let the numbers be 3x and 4x, respectively.
Then, according to the question
$ {{(4x)}^{2}}=8\times {{(3x)}^{2}}-224 $
$ \Rightarrow $ $ 16x^{2}=72x^{2}-224 $
$ \Rightarrow $ $ 72x^{2}-16x^{2}=224 $
$ \Rightarrow $ $ 56x^{2}=224 $
$ \Rightarrow $ $ x^{2}=\frac{224}{56}=4 $
$ \Rightarrow $ $ x=\sqrt{4}=2 $
$ \therefore $ Numbers = 6 and 8