Quantitative Aptitude Ques 1362

Question: If $ {{\cos }^{4}}x+{{\cos }^{2}}x=1, $ then the value of $ {{\tan }^{4}}x+{{\tan }^{2}}x $ is

Options:

A) $ \frac{1}{4} $

B) $ \frac{1}{2} $

C) $ 1 $

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

  • Given, $ {{\cos }^{4}}x+{{\cos }^{2}}x=1 $

$ \Rightarrow $ $ {{\cos }^{4}}x=1-{{\cos }^{2}}x $ $ [\because {{\sin }^{2}}x+{{\cos }^{2}}x=1] $

$ \Rightarrow $ $ {{\cos }^{4}}x={{\sin }^{2}}x $ … (i) Now, $ {{\tan }^{4}}x+{{\tan }^{2}}x=? $ [To find the value of $ ({{\tan }^{4}}x+{{\tan }^{2}}x), $ we have to convert it into $ \sin \theta $ and $ \cos \theta $ form] Hence, $ \frac{{{\sin }^{4}}x}{{{\cos }^{4}}x}+\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x} $ $ [ \because \tan \theta =\frac{\sin \theta }{\cos \theta } ] $ $ =\frac{{{\sin }^{4}}x+{{\sin }^{2}}x{{\cos }^{2}}x}{{{\cos }^{4}}x} $ $ =\frac{{{\sin }^{2}}x({{\sin }^{2}}x+{{\cos }^{2}}x)}{{{\cos }^{4}}x} $ $ =\frac{{{\sin }^{2}}x\times 1}{{{\sin }^{2}}x}=1 $ [from Eq. (i), $ {{\cos }^{4}}x={{\sin }^{2}}x $ ]