Quantitative Aptitude Ques 1356

Question: On increasing the diameter of a circle by 75%, the percentage increase in the perimeter is

Options:

A) 76%

B) 80%

C) 65%

D) 70%

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let diameter of circle $ =d $ Perimeters $ =2\pi r=\pi d $ $ [\because d=2r] $ Then, new diameter $ =d+\frac{d\times 75}{100}=d+\frac{3d}{4}=\frac{7d}{4} $ Now, new perimeter $ =\pi \times \frac{7d}{4}=\frac{7\pi d}{4} $

$ \therefore $ Increase in perimeter $ =\frac{7\pi d}{4}-\pi d=\pi [ \frac{7d}{4}-d ] $ $ =\pi ( \frac{3d}{4} )=\frac{3\pi d}{4}=\pi d\times \frac{3}{4} $ Now, percentage increase in perimeter $ =\frac{\pi d\times \frac{3}{4}}{\pi d}\times 100=\frac{3}{4}\times 100=75 $ %