Question: On increasing the diameter of a circle by 75%, the percentage increase in the perimeter is
Options:
A) 76%
B) 80%
C) 65%
D) 70%
Show Answer
Answer:
Correct Answer: A
Solution:
- Let diameter of circle $ =d $
Perimeters $ =2\pi r=\pi d $ $ [\because d=2r] $
Then, new diameter $ =d+\frac{d\times 75}{100}=d+\frac{3d}{4}=\frac{7d}{4} $
Now, new perimeter $ =\pi \times \frac{7d}{4}=\frac{7\pi d}{4} $
$ \therefore $ Increase in perimeter $ =\frac{7\pi d}{4}-\pi d=\pi [ \frac{7d}{4}-d ] $
$ =\pi ( \frac{3d}{4} )=\frac{3\pi d}{4}=\pi d\times \frac{3}{4} $
Now, percentage increase in perimeter
$ =\frac{\pi d\times \frac{3}{4}}{\pi d}\times 100=\frac{3}{4}\times 100=75 $ %