Question: In an examination, 75% candidates passed in English and 60% passed in Mathematics. 25% failed in both and 240 passed the examination. Find the total number of candidates.
Options:
A) 492
B) 300
C) 500
D) 400
Show Answer
Answer:
Correct Answer: D
Solution:
- Let the total number of candidates be x.
Number of candidates passed in English, $ =n(E)=75% $
Number of candidates passed in Maths, $ =n(M)=60% $
Now, number of candidates passed either in English in Maths or in both $ =n(E\cup M)=(100-25)=75% $
Number of candidates passed in both subjects i.e. passed the exam $ =n[E\cap M] $
We know that, $ =n(E\cap M)=n(E)+n(M)-n(E\cap M) $
$ 75=60+75-n(E\cap M) $
$ n(E\cap M)=60% $
Now, given total candidates passed $ =240 $
$ \therefore $ 60% of $ x=240 $
$ \Rightarrow $ $ \frac{60}{100}\times x=240 $
$ \Rightarrow $ $ x=\frac{240\times 100}{60} $
$ \Rightarrow $ $ x=400 $
$ \therefore $ Total number of candidates $ =400 $