Options:
A) $ \frac{4}{5} $
B) $ \frac{5}{4} $
C) $ \frac{3}{4} $
D) $ \frac{3}{5} $
Show Answer
Answer:
Correct Answer: B
Solution:
- In $ \Delta ABC, $ $ AQ=BQ $
and $ AP=PC $
From $ \Delta BAP, $ we have
$ BP^{2}=AB^{2}+AP^{2} $
(i)
From $ \Delta CAQ, $ we have
$ CQ^{2}=AQ^{2}+AC^{2} $
(ii)
From $ \Delta ABC, $ we have
$ BC^{2}=AB^{2}+AC^{2} $ … (iii)
$ \because $ $ \frac{BP^{2}+CQ^{2}}{BC^{2}}=\frac{AB^{2}+AP^{2}+AQ^{2}+AC^{2}}{BC^{2}} $
[from Eqs. (1) and (ii)]
$ =\frac{AB^{2}+AC^{2}+{{( \frac{1}{2}AB )}^{2}}+{{( \frac{1}{2}AC )}^{2}}}{BC^{2}} $
$ =\frac{BC^{2}+\frac{1}{4}(AB^{2}+AC^{2})}{BC^{2}} $
$ \Rightarrow $ $ \frac{BC^{2}+\frac{1}{4}BC^{2}}{BC^{2}} $
$ \Rightarrow $ $ \frac{\frac{5}{4}BC^{2}}{BC^{2}}=\frac{5}{4} $