Quantitative Aptitude Ques 1349
Question: The value of $ {{( \frac{1}{64} )}^{0}}+{{(64)}^{-1/2}}+{{(32)}^{4/5}}-{{(32)}^{-4/5}} $ is
Options:
A) $ 17\frac{1}{15} $
B) $ 15\frac{1}{17} $
C) $ 10\frac{1}{17} $
D) $ 17\frac{1}{16} $
Show Answer
Answer:
Correct Answer: D
Solution:
- Given, $ {{( \frac{1}{64} )}^{0}}+{{(64)}^{-1/2}}+{{(32)}^{4/5}}-{{(32)}^{-4/5}} $
$ =1+{{( \frac{1}{64} )}^{1/2}}+{{(32)}^{4/5}}-{{( \frac{1}{32} )}^{4/5}} $
$ [ \because a^{0}=1,{a^{-m}}=\frac{1}{a^{m}} ] $
$ =1+{{( \frac{1}{8^{2}} )}^{1/2}}+{{(2)}^{5\times \frac{4}{5}}}-\frac{1}{{{(2)}^{5\times \frac{4}{5}}}} $
$ =1+\frac{1}{8}+{{(2)}^{4}}-\frac{1}{{{(2)}^{4}}} $
$ =\frac{1}{8}+16-\frac{1}{16}=17\frac{1}{16} $