Quantitative Aptitude Ques 1349

Question: The value of $ {{( \frac{1}{64} )}^{0}}+{{(64)}^{-1/2}}+{{(32)}^{4/5}}-{{(32)}^{-4/5}} $ is

Options:

A) $ 17\frac{1}{15} $

B) $ 15\frac{1}{17} $

C) $ 10\frac{1}{17} $

D) $ 17\frac{1}{16} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given, $ {{( \frac{1}{64} )}^{0}}+{{(64)}^{-1/2}}+{{(32)}^{4/5}}-{{(32)}^{-4/5}} $ $ =1+{{( \frac{1}{64} )}^{1/2}}+{{(32)}^{4/5}}-{{( \frac{1}{32} )}^{4/5}} $ $ [ \because a^{0}=1,{a^{-m}}=\frac{1}{a^{m}} ] $ $ =1+{{( \frac{1}{8^{2}} )}^{1/2}}+{{(2)}^{5\times \frac{4}{5}}}-\frac{1}{{{(2)}^{5\times \frac{4}{5}}}} $ $ =1+\frac{1}{8}+{{(2)}^{4}}-\frac{1}{{{(2)}^{4}}} $ $ =\frac{1}{8}+16-\frac{1}{16}=17\frac{1}{16} $