A) 2.5%
B) 2%
C) 3.5%
D) 2.05%
Correct Answer: A
$ \therefore $ $ 3840=P{{( 1+\frac{r}{100} )}^{4}} $ (i) and $ 3936=P{{( 1+\frac{r}{100} )}^{5}} $ … (ii) On dividing Eq. (ii) by Eq. (i), we get $ \frac{3936}{3840}=1+\frac{r}{100} $
$ \Rightarrow $ $ \frac{3936}{3840}-1=\frac{r}{100} $
$ \Rightarrow $ $ \frac{3936-3840}{3840}=\frac{r}{100} $
$ \Rightarrow $ $ \frac{96}{3840}=\frac{r}{100} $
$ \Rightarrow $ $ r=\frac{96\times 100}{3840} $
$ \therefore $ $ r=2.5% $ per annum Alternate Method Given, $ C _1=3840 $ and $ C _2=3936 $
$ \Rightarrow $ Rate of interest $ =\frac{C _2-C _1}{C _1}\times 100% $
$ \Rightarrow $ $ r=\frac{3936-3840}{3840}\times 100% $
$ r=\frac{96}{3840}\times 100% $
$ \Rightarrow $ $ r=\frac{960}{384} $
Rate of interest, $ r=25% $ per annum