Quantitative Aptitude Ques 1342

Question: Perimeter of a rhombus is 2p unit and sum of length of diagonals is m units, then area of the rhombus is

Options:

A) $ \frac{1}{4}m^{2}psqunits $

B) $ \frac{1}{4}mp^{2}squnits $

C) $ \frac{1}{4}(m^{2}-p^{2})squnits $

D) $ \frac{1}{4}(p^{2}-m^{2})squnits $

Show Answer

Answer:

Correct Answer: C

Solution:

  • In a rhombus $ d_1^{2}+d_2^{2}=4a^{2} $ Here, $ d _1 $ and $ d _2 $ are diagonals, and a = Length of edge $ =\frac{2p}{4}=\frac{p}{2} $

$ \therefore $ $ d_1^{2}+d_2^{2}=4\times {{( \frac{p}{2} )}^{2}} $

$ \Rightarrow $ $ d_1^{2}+d_2^{2}=p^{2} $ On adding $ 2d _1d _2 $ both sides, we get $ d_1^{2}+d_2^{2}+2d _1d _2=p^{2}+2d _1d _2 $

$ \Rightarrow $ $ {{(d _1+d _2)}^{2}}=p^{2}+2d _1d _2 $

$ \Rightarrow $ $ m^{2}=p^{2}+2d _1d _2 $ $ [d _1+d _2=m,given] $

$ \Rightarrow $ $ 2d _1d _2=m^{2}-p^{2} $ On dividing the whole expression by 4, we get $ \frac{1}{2}d _1d _2=\frac{1}{4}(m^{2}-p^{2}) $ and $ \frac{1}{2}d _1d _2= $ Area of rhombus So, the required area of rhombus $ =\frac{1}{4}(m^{2}-p^{2}) $ sq units