Quantitative Aptitude Ques 134

Question: If O is the centre of a circle of radius 5 cm. At a distance of 13 cm from O, a point P is taken. From this point, two tangents PQ and PR are drawn to the circle. Then, the area of quadrilateral PQOR is

Options:

A) $ 60,cm^{2} $

B) $ 32.5,cm^{2} $

C) $ 65,cm^{2} $

D) $ 30,cm^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Clearly, $ OQ=OR=5,cm, $ $ \angle OQP=\angle ORP=90{}^\circ $ and $ OP=13,cm $

$ \therefore $ $ PQ^{2}={{(OP^{2}-OQ)}^{2}}={{(13)}^{2}}-{{(5)}^{2}} $ $ =(169-25)=144 $

$ \Rightarrow $ $ PQ=\sqrt{144}=12,cm $

$ \therefore $ $ ar(\Delta OQP)=\frac{1}{2}\times PQ\times OQ $ $ =( \frac{1}{2}\times 12\times 5 )=30,cm^{2} $ Similarly, $ ar(\Delta ORP)=30,cm^{2} $

$ \therefore $ ar(quadrilateral PQOR) $ =(30+30)=60,cm^{2} $