Quantitative Aptitude Ques 1339

Question: In $ \Delta ABC, $ $ O $ is its circumcentre and $ \angle BAC=50{}^\circ . $ The measure of $ \angle OBC $ is

Options:

A) $ 60{}^\circ $

B) $ 30{}^\circ $

C) $ 40{}^\circ $

D) $ 50{}^\circ $

Show Answer

Answer:

Correct Answer: C

Solution:

  • In $ \Delta ABC, $ O is the circumcentre of $ \Delta ABC. $

$ \therefore $ $ \angle BOC=2\angle BAC $ [since, angle subtended at the centre is twice the angle subtended at the point A]

$ \therefore $ $ \angle BOC=2\times 50{}^\circ =100{}^\circ $ Now, $ \angle OBC=\angle OCB $ [ $ \because $ angle along same side OB = OC are radius] Now, in $ \Delta BOC $

$ \Rightarrow $ $ \angle OBC+\angle OCB+\angle BOC=180{}^\circ $ [angle sum property]

$ \Rightarrow $ $ 2\angle OBC=180{}^\circ -100{}^\circ $

$ \Rightarrow $ $ 2\angle OBC=80{}^\circ $

$ \Rightarrow $ $ \angle OBC=40{}^\circ $