Question: Two die are thrown simultaneously. What is the probability of getting a number other than 4 on any dice?
Options:
A) $ \frac{25}{36} $
B) $ \frac{1}{3} $
C) $ \frac{17}{36} $
D) $ \frac{2}{3} $
Show Answer
Answer:
Correct Answer: A
Solution:
- Here, $ n(S)=6\times 6=36 $ and E = Event of getting a number other than 4 on any dice
$ ={(1,1), $ $ (1,2), $ $ (1,3), $ $ (1,5), $ $ (1,6), $ $ (2,1), $ $ (2,2), $ $ (2,3), $ $ (2,5), $ $ (2,6), $ $ (3,1), $ $ (3,2), $ $ (3,3), $ $ (3,5), $ $ (3,6), $ $ (5,1), $ $ (5,2), $ $ (5,3), $ $ (5,5), $ $ (5,6), $ $ (6,1), $ $ (6,2), $ $ (6,3), $ $ (6,5), $ $ (6,6)} $
$ \therefore $ $ P(E)=\frac{n(E)}{n(S)}=\frac{25}{36} $