Question: If $ x=a(\sin \theta +\cos \theta ), $ $ y=b(\sin \theta -\cos \theta ), $ then the value of $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} $ is
Options:
A) $ 0 $
B) $ 1 $
C) $ 2 $
D) $ -2 $
Show Answer
Answer:
Correct Answer: C
Solution:
- Given, $ x=a(\sin \theta +cos\theta ) $
On squaring both sides, we get
$ x^{2}=a^{2}({{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta ) $
$ =a^{2}(1+2\sin \theta \cos \theta ) $
Similarly, $ y=b(\sin \theta -\cos \theta ) $
$ \Rightarrow $ $ y^{2}=b^{2}({{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta ) $
$ =b^{2}(1-2\sin \theta \cos \theta ) $
Now, $ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{a^{2}(1+2\sin \theta \cos \theta )}{a^{2}} $
$ +\frac{b^{2}(1-2\sin \theta \cos \theta )}{b^{2}} $
$ =1+2\sin \theta \cos \theta +1-2\sin \theta \cos \theta $
$ =2 $