Quantitative Aptitude Ques 1294
Question: Directions: In the following questions, two equations numbered I and II have been given. You have to solve both the equation and mark the correct answer. [IBPS (PO) Pre 2011]
I. $ 3x^{2}+23x+44=0 $ II. $ 3y^{2}+20y+33=0 $
Options:
A) $ x<y $
B) $ x>y $
C) $ x\ge y $
D) $ x\le y $
E) Relationship between x and y cannot be Established
Show Answer
Answer:
Correct Answer: D
Solution:
- I. $ 3x^{2}+23x+44=0 $
$ \Rightarrow $ $ 3x^{2}+12x+11x+44=0 $
$ \Rightarrow $ $ 3x(x+4)+11(x+4)=0 $
$ \Rightarrow $ $ (3x+11)(x+4)=0 $
$ \Rightarrow $ $ x=-4, $ $ x=-\frac{11}{3} $ II. $ 3y^{2}+20y+33=0 $
$ \Rightarrow $ $ 3y^{2}+11y+9y+33=0 $
$ \Rightarrow $ $ y(3y+11)+3(3y+11)=0 $
$ \Rightarrow $ $ (3y+11)(y+3)=0 $
$ \Rightarrow $ $ y=-3, $ $ y=-\frac{11}{3} $ Hence, $ y\ge x $